-10x(x-6)=-10^2+60x

Simple and best practice solution for -10x(x-6)=-10^2+60x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -10x(x-6)=-10^2+60x equation:



-10x(x-6)=-10^2+60x
We move all terms to the left:
-10x(x-6)-(-10^2+60x)=0
We multiply parentheses
-10x^2+60x-(-10^2+60x)=0
We get rid of parentheses
-10x^2+60x-60x+10^2=0
We add all the numbers together, and all the variables
-10x^2+100=0
a = -10; b = 0; c = +100;
Δ = b2-4ac
Δ = 02-4·(-10)·100
Δ = 4000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{4000}=\sqrt{400*10}=\sqrt{400}*\sqrt{10}=20\sqrt{10}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-20\sqrt{10}}{2*-10}=\frac{0-20\sqrt{10}}{-20} =-\frac{20\sqrt{10}}{-20} =-\frac{\sqrt{10}}{-1} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+20\sqrt{10}}{2*-10}=\frac{0+20\sqrt{10}}{-20} =\frac{20\sqrt{10}}{-20} =\frac{\sqrt{10}}{-1} $

See similar equations:

| -35=-7/8x | | -4d-1=1+4d | | 12-10+3y=11 | | 4-a=1a= | | -91=7-7(2+2y) | | 84-x=202 | | (3x-8)/6=2x/10 | | 4a-12=12(3) | | 78(2)=8x+12 | | 105-v=254 | | -4(r+2)=4 | | 18=2b–8 | | −15=−5+−7x​ | | 5u+9-4=17 | | -3(-6r+8)=120 | | 6(x-6)=9(2x+9) | | O=x/2 | | 5x-2=3x*4 | | -5(7+3x)=125 | | -4=r-2-7 | | –8h+6=–9h | | -33=-8w+5(w-3) | | p−4)=−18 | | 3(3+0.5x)+1=4x | | 7=w-36/9 | | 38=10-2y | | 2.5u+20=35 | | -3c-5=-23 | | x=10000(1+0.08)^24 | | 132x=3700 | | 4x-9x=-35 | | 8(u+5)+3u=29 |

Equations solver categories